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Abstract

Several alternative interpretations of all-or-none processes for

paired-associate learning and concept formation are examined. These

models, along with three linear models, are applied to data from eight

paired-associate learning experiments. The principal analyses involve

goodness-of-fit tests for observed response sequences and conditional

probabilities. The results favor a three-process model that postUlates

a distinction between long-term and short-term retention and allows for

forgetting between successive presentations of the same stimulus item.





1. Introduction

In recent articles Bower (1961; 1962), Crothers (1962), Estes

(1960; 1961), Suppes & Ginsberg (1963), and others have examined a wide

array of data on paired-associate learning and concept formation in

terms of an all-or-none process. The particular model they consider

represents a special case of more general models of Stimulus Sampling

Theory, and has been frequently labeled as the one-element pattern

model. In a paired-associate experiment the single stimulus element

represents a stimulus item from a list of paired associates; in a

concept formation experiment the stimulus element represents a concept,

or some aspect of a concept. The two principal assumptions of the model

are as follows: (1) Until the stimulus element is conditioned, there

is a constant probability g that the sUbject will respond correctly

by guessing; (2) On each trial there is a probability c that the

single element will become conditioned to the correct response. Thus,

on trial n of an exper~ent the stimulus element can be regarded as

being in one of two conditioning states: in state C the element is

conditioned to the correct response; in state C the element is

unconditioned. The element starts out in state C and subsequent

mo~es to state C are specified by the transition matrix

C C

C

C
(1)

By and large, the results reported by Bower, Crothers, Estes,

and Suppes & Ginsberg indicate a remarkably close correspondence
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between observed and predicted values for the one-element model. The

agreement is particularly impressive when compared to goodness-of-fit

results obtained for other models. However, despite the excellent fits

of the one-element model, there is at least one aspect of the data that

is contradictory. As pointed out by Suppes &:Ginsberg, when appropriate

statistical analyses are made one can often demonstrate a non-stationary

effect before the last error; i.e., there is a tendency for the prob

ability of a correct response to increase over trials prior to the last

error and not simply remain a constant g, as predicted by the theory.

To account for this non~stationary effect, Suppes & Ginsberg pro

pose a two~element stimulus sampling model. Roughly speaking, their

model is defined by three conditioning states: CO' C
l

and C
2

.

For state Co both elements are unconditioned and the probability of

a correct response is g; for state Clone of the two elements is

conditioned and the probability of a correct response is g' for

state C2 both elements are conditioned and the probability of a

correct response is 1. Applying stimulus_sampling axioms, they derive

the transition matrix

C2 Cl Co

C2 1 0 0

Cl b l-b 0 , (2)

Co 0 a l-a

and show that the probability of a correct response over trials before

the last error is an increasing function bounded between g and g' .
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In their view this two-element process represents a conceptual compro-

mise between incremental and all-or-none learning models. However,

there are at least two reasons why the two-element model is unsatis-

factory for paired-associate learning. First, while it is reasonable

to equate the parameter g with the reciprocal of the number of response

alternatives, there seems to be no convincing experimental interpreta-

tion of a value of g' estimated from data. Secondly, we shall see

that even when g' is estimated from data, certain predictions of the

two-element model are inaccurate.

The aim of this paper is to develop a model that is conceptually

quite different from the two-element model, but which predicts the

non-stationarity effect and is relatively more accurate otherwise.

We cite paired-associate data using the anticipation method in com-

paring the goodness-of-fit of the proposed model with the fits of the

one-element and the two-element models. Also, for purposes of com-

parison, we examine several linear models.

Because of the particular data to be analyzed here, all of the

models will be formulated fora task involving a fixed set ofr

response alternatives; however, generalization of the model to un-

restricted response sets presents no new problems. Specifically we

shall consider a paired-associate task in which the sUbject is told

the responses available to him; each response occurs equally often as

the to-be-Iearned response, and so we assume that the probability of

a correct response by guessing is ~ • On each trial the stimuli are
r

exhibited singly in a new random order. When a stimulus is presented
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the subject is required to make a response and is then informed of the

correct response.

To introduce the proposed model, let us sketch the main argument

that motivated us toward this approach. When a set of models collectively

faUB to provide accurate detailed predictions, a major reason would

seem to be that some psychological process not represented in the

models is influencing behavior. A prime candidate for such a process

would appear to be the occurrence of forgetting between successive

presentations of the same item; certainly, forgetting is as ubiquitous

as acquisition. Appreciable forgetting of individual consonant syllables

and paired-associates over short intervals of time has become an

established fact (Murdock, 1961; Peterson & Peterson, 1959) . In these

experiments J the subject counted backwards during the interval between

the reinforced presentation and the test. O·f course, in conventional

paired-associate learning, the interpolated activity is the presentation

and testing of other stimulus-response pairs. Despite this procedural

difference, the notion that forgetting plays an important role in

paired-associate list learning seemed worth exploring.

Moreover, forgetting has a natural Markovian interpretation as a

transition to a lower state of learning. Since the subject eventually

learns to criterion, it seems important to introduce the distinction

between long-term retention and short-term retention. In the latter

state, forgetting can occur and corresponds to regression to a state

in which errors are possible. Beyond these general remarks, there

are a variety of ways in which one can pursue the mathematical
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formulation of learning models that incorporate a forgetting process.

In the next section we shall consider only the model that appears most

promising. After the data have peen presented, it will Pe easier to

see why certain alternative models emPodying forgetting processes are

less satisfactory.

2. A Learning Model with Encoding and Forgetting Axioms

The model assumes four stages of learning: L, S F f and U

Learning is postulated to consist of encoding the stimulus (Lawrence,

1963) followed by associating the encoded stimulus to the correct

response. Before encoding has occurred, the stimulus is said to be in

state U (uncoded); in this state the subject is assumed to respond

by guessing randomly among the r alternatives. After the stimulus

is encoded, it can become associated to the correct response. Once the

association forms the stimulus element is absorbed in state L (long

term memory) and the subject makes no errors on subsequent presentations

of the item. Transitions between the intermediate states Sand F

represent events assumed to intervene between the encoding and association

phases. State S is a short-term memory state, expressing the notion

that a temporary connection between the encoded stimulus and the response

may form prior to establishing the permanent association; while the

association is temporarily stored the correct response occurs with

probability 1. However, the temporary connection is susceptible to

forgetting, in which case the stimulus element is said to pass into

state F. Here, as in state U, the sUbject guesses randomly; however,

forgetting is only partial, since the encoding is retained.
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Stated more precisely, encoding for a given stimulus item occurs

at most on one trial; the probability that encoding occurs on trial n

given that it has not occurred on a previous trial is c. If an item

is presented that has already been encOded (either on the present

trial or on an earlier trial), then with probability a it goes into

state L and with probability l~a it goes into state S. Thus,

after each presentation, an encoded item is in either state L or S,

and if the item were to be presented again immediately the subject would

make the correct response with probability 1 However, other events

intervene from one presentation of an item to its next presentation,

and during this period we assume there is a probability f that an item

in state S will move back to state F. We assume the ~lue of f

depends upon the number and type of intervening items; also, f depends

upon the exposure time of the given item, for this affects the repetition

rate and hence the slope of the forgetting function (Hellyer, 1962;

Peterson, Saltzman, Hillner, & Land, 1962).

Given the above assumptiDns, it can be shown that moves among the

f=r states are described by the following transition matrix and

response probability vector:

L S F U Pr(correct)

L 1 0 0 0 1

S a (l-a)(l-f) (l-a)f 0 1
(3)

F a (l-a)(l-f) (l-a)f 0 g

U ca c(l-a)(l-f) c(l-a)f l-c g
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where g
1
r

and will be used throughout the paper to denote the

guessing probability. Before proceeding with the derivations, let us

mention a few features of this model. First, it is clear that the

predicted probability of a correct response can increase over trials

prior to the last error. This is because errors later in learning are

more likely to have occurred in state F than are earlier errors;

hence, the later errors would have been more frequently preceded by

runs of errorless trials in state S. Another property which seems

desirable is that the model is qualitatively in accord with overlearning

phenomena; postcriterion training trials produce transitions from S

to L, thereby increasing retention.

3. Linear Models

For convenience, we classify under this heading all learning models

that assume at least one of the factors governing the trial by trial

change in response probability is a linear process. The simplest such

model is the single-operator linear model (Bush&;Mosteller, 1955;

Bush & Sternberg, 1959). This model assumes that the probability of

the reinforced response increases according to the equation

P 1 ~ (1 - e)p + en+ n (4)

Modifications of the above axiom have frequently
1

p ~

1 r

been applied to probability discrimination learning as well as to

where

paired-associate learning.

Recently, the ability of the single-operator model to account for

paired-associate learning has been questioned. The model has been

compared unfavorably with the one-element model (BOwer, 1961; Estes,
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1961; Estes, Hopkins, & Crothers, 1960), touching off a controversy

between proponents of all-or-none learning and incremental learning,

Our aim in this article is not to support either theoretical position,

Instead, we assess only the relative merits of the particular models

presented here,

In addition to the single-operator linear model, we shall examine

two other models which include linearity assumptions. Since these models

are more complex than the original linear model and contain two parameters,

they are especially useful in providing comparisons with Markovian processes

having more than one parameter. The first linear model (Norman, 1963)

assumes a two-phase learning process. An event called "first-learning"

is postulated that occurs on at most one trial for any stimulus item;

the probability that first-learning occurs on trial k given that it

has not occurred on a previous trial is c A sUbject's probability of

making a correct response depends on the trial of first-learning, Spe

cifically the probability of a correct response on trial n given that

first-learning occurred on trial k is

,

g)(1_8)n-k ,

for

for n~k.

Thus, for k trials (Where k is geometrically distributed with

parameter c) no learning occurs, whereas after trial k a linear

learning process takes over of the form specified by Eg. 4. Note that

Norman's two-phase model reduces to the one-element model when 8 = 1

and to the simple linear model of Eg. 4 when c = 1 The reade.r is
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referred to Norman's paper for a fuller discussion of the properties and

interpretation of the model.

An alternative two-parameter model that incorporates a linear

learning process also has been developed by Norman (1964). In this

model, the probability of a correct response on trial n + 1 is given

by the following equation:

+ e , with probability

, with probability

c

1- c
(6)

Thus on each trial exactly one of two events can occur. With probability

1- c no learning takes place, or with probability c the response

probability receives an increment described by the linear tran~rmation

given in Eq. 4. Once again, if B= 1 this process reduces to the one-

element model, whereas if c = 1 we have the simple linear model. Using

Norman's terminology, we shall refer to this combination of the all-or-

none and linear axioms as the random-trial-incremental model; henceforth,

abbreviated as the RTI model.

4. Predictions for the Long-Short Model

We now derive a few basic predictions for the model described in

Sec. 2; henceforth, for simplicity we shall refer to this model as the

LS model, a designation that emphasizes the role of the long-term and

short-term retention states. We present those predictions that are

particularly helpful in making comparisons among the various models

discussed sO far. The derivations are carried out for a single stimulus

item because later, when we analyze data, it is assumed that the stimulus
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items are stochastically independent and identical. Throughout the paper

we let Un' F ,
n

s ,
n

and L denote the events of being in state U
n

F, S, and L respectively at the start of trial n also e and
n

c denote the occurrence of an error and of a correct response on trial
n

n. Further, un' f ,and s are used to denote the probabilities
n n

of events U
n

F and S ,respectively.
n n

4.1 Learning curve.

For brevity, let

we obtain

t = f + sn n n Then, from the matrix in Eg. 3

u
n

= (l_C)n-l

sn = (1- a)(l- f)tn_l + c(l- a)(l- f)Un_l

Adding Eqs. 7b and 7c yields

t
n

= (1- a)t
n

_
l

+ c(l- a)(l- c)n-l

The solution of this difference equation is (cf. Atkinson &Estes,

1963, p. 148)

( )n-lt
n

= 1- a t
l

+
n-2

c(l- a)n-l E
i=O

1l:..::..5:) i
\1 - a

Or, since we assume t l = 0 ,

t = c(l _ a)n-l
n

n-2 1l:..::..5:)i
L \1- a
i=O
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There are two cases to be distin~ished:

t = c(n_l)(l_a)n-l, for c = a
n

(8a)

and
t = c(l- a) [(1- a)n-l _ (1- c)n-l1

n c - a J for c ~ a. (8b)

Then,
f = ft = fc(l- a) [(1- a)n-l _ (1- c)n-ll

n n c- a J ( 9a)

s = (1- f)t = c(l- f)(l-a) f(l_ a)n-l _ (1- c)n-l] (9b)
n n c-a L

for c ~ a . When c = a , the expressions for f and
n

s are
n

obvious from Eg. 8a.

Since errors occur with probability 1 - g in either state U

or F, the probability of an error on trial n is

Pr(e)=(l-g)(u +f).n n n

4.2 E(T) , expected~ errors per item.

This quantity is the sum of the expected total errors in state U

and in state F, which we denote as E(U) and E(F) , respectively.

It is well known that

E(U) = 1 - g .
c

To find E(F) we begin by deriving the probability that the subject

eventually enters state F First, define p as the probability of

eventually returning from state S to state F; it is easily shown

(l-a)f
P=a+(l-a)f

that
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The probability that the subject eventually enters state F is written

in terms of p and is simply

c(l- a)f + (1- c)c(l- a)f + (1- c)2c (1_ a)f +

+ c (1 - a) (1 - f) P + (1 - c) c( 1 - a)( 1 - f) p + (1- c) 2c (1 - a) (1- f) p + •..

(1- a)[f + (1- f)p] .

Given tbat the subject has entered state F, the equation for the

expected number of errors in state F bas been found previously

(Crothers, 1963, p. 5) and is as follows:

(1- g)[a + (1- a)f]
a

Hence

E(F) ~ (l~g)(l- a)[f + (1- f)p][a + (1- a)f]
a

Combining these results we obtain

E(T) ~ E(U) + E(F)

(11)

Of course this expression could bave been computed directly from Eq. 10;

however, the derivation was carried out in this way because some of the

intermediate results will be needed later.

4.3 Distributions of the trial number of the last error.

Let v be the probability that the last error occurs on trial n.
n

Further, let bU denote the probability of the event "no further

errors after a response in state U", and likewise define b
F

for

state F. Then

v ~ Pr(e liu )bu + Pr(e nF )b
Fn n n ,n n
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Further,

This equation was obtained by considering all of the ways in which the

event "no further errors after a response in state F" can occur. For

example, the term (1- a)(l-f)gp~ represents the probability of the

joint event "pass to state S, eventually return to state F, make

a correct response on the next trial, and make no further errors."

Algebraic operations yield

(12 )

where

w = a + (l-a)(l-f)(l- p)

Z 1 - (l-a)(p- pf+f)g .

Likewise,

b
U

= ca + c(l- a)(l- f)(l- p + gpbF)

+ c(l- a)gfbF + g(l- C)bu .

Simplifying and substituting for bF from Eq. 12 yields

cw
bU = z[l - (1- c)gJ

Elf using Eqs. 12 and 13 in the above expression for

w [CUn Jv = - (1- g) . ( .. )+ f ,n Z l-.g l·.c n

(13)

v we obtain
n

(14 )

where u and f are given by Egs. 7a and 9a, respectively.
n n

For the probability that the subject makes no errors, which is

denoted as vO ' we have
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This completes the derivation.

4.4 The probability £!~~~ trial n + 1 , conditional ~ ~

error on trial n.

We begin by finding the probability of an error on both trial n

and n+ 1 ; namely,

Pr(e ne 1) = Pr(e (Ie lnU ) + Pr(e ne If'lF)n n+ n n+ n n n+ n

= (1- g)2 {rC(l- a)f + 1 - c]un + f(l- a)fn)

(16)

To study the behavior of Pr( e 1 1e )n+ n as n increases, we

substitute Eq. 15 into Eq. 16 and divide both numerator and denominator

by u
n

Pr( e 1 1 e )n+ n

(1 - g){rC(l- a)f+ 1- c] +f(l- a)(~)
f

n
1 +-

U
n

in the denominator, and from Egs.7a and 9a (forratio

the abov~ equation is dominated by theRegarded as a
f

n
u

n

function of

f
n

-=
u

n

n ,

c(l- a)f
c - a [

n-l](i =~) - 1 .

a ~ c)

We see that the quantity (~)n-l1 - c
increases as n increases if, and

only i~ a is less than c Under this condition, therefore,

Pr(e lie) decreases with increasing values of n.n+ n

4.5 Probabilities of response sequences~ trials n to n+ 3 .

In this section we present predictions for four-tuple response
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sequences; these quantities are particularly useful in making com-

parisons among the various models described in this paper. For

simplicity we denote the 16 possible outcome sequences over trials n

to n + 3 as follows:

a ~ c c c c a ~ e c c cl,n n n+l n+2 n+3 9,n n n+l n+2 n+3

a ~ c c c e a ~ e c c e2,n n n+l n+2 n+3 la,n n n+l n+2 n+3

a ~ c c e c a e c e c
3,n n n+l n+2 n+3 ll,n n n+l n+2 n+3

a ~ c c e e a ~ e c e e
4,n n n+l n+2 n+3 12,n n n+l n+2 n+3

(lS)
a ~ c e c c a ~ e e c c
5,n n n+l n+2 n+3 13,n n n+l n+2 n+3

a ~ c e c e a ~ e e c e
6,n n n+l n+2 n+3 14,n n n+l n+2 n+3

a c e e c a ~ e e e c
7,n n n+l n+2 n+3 15,n n n+l n+2 n+3

a ~ce e e a - e e e eS,n n n+l n+2 n+3 16,n - n n+l n+2 n+3

These designations will be used throughout this paper. Although this

usage may seem inconvenient, it greatly reduces the complexity of

subsequent expressions.

From the model one can derive expressions for Pre a. )l,n and

from these an array of other quantities can be computed. For example,

Pr(c e 2) ~ Pr(a
3

) + Pr(a4 ) + Pr(a
7

) + Pr(aS ),n n+ ,n ,n ,n ,D

and so forth.

We will not present the derivations for Pre a. )l,n
here, since

they are straightforward and involve only elementary probability theory.

(Readers not familiar with the methods involved in such derivations can
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consult Atkinson and Estes, 1963.) Howe vir, the derivations are

lengthy and tedious, and consequently it is of value to present the

full array of predictions. They are as follows:

Pr(Ol ) .- ( 1 - s - f - u ) + (s + gf ) ( 'H xA
l

) + gun[c(a+ xAl ) + gBl],n n n n n n

Pr(02 ) ~ (sn + gfn )xA
2

+ gun [cxA2 +gB
2

]
,n

pr(03 ) ~ (sn + gfn )xA
3

+ gun [CxA
3

+ gB
3

],n

Pr(04 ) ~ (sn + gf
n

)xA
4

+ gun [cxA
4

+ gB
4

]
,n

pr(05,n) ~ (sn +gfn)yAl + gun[cyAl + (1- g)Bl ]

Pr(06,n) ~ (sn+ gfn)yA2 + gun[cyA2 + (1-g)B2 ]

Pr( 07 ) ~ (s + gf )YA
3

+ gu [cyA
3

+ (1- g)B
3

]
,n n n n

Pr(OS ) ~ (s +gf )yA
4

+ gu [cyA
4

+ (1-g)B
4

]
,n n n n

pr(09 ) ~ (1- gjfn('a:+ xAl ) + (1 - g)un[c(a+ xAl ) + gBl],n

Pr(OlO,n) ~ (1- g)fnxA
2

+ (1- g)U
n

[cxA
2

+ gB
2

]

Pr(Oll,n) ~ (1- g)f
n

xA
3

+ (1- g)U
n

[CxA
3

+ gB
3

]

Pr(012,n) ~ (1- g)f
n

xA
4

+ (1- g)U
n

[CXA
4

+ gB
4

]

pr(013,n) ~ (1- g)fnYAl + (1- g)Un[cyAl + (1- g)B
l

]

pr(014,n) ~ (1- g)f
n

yA
2

+ (1- g)u
n

[cyA
2

+ (1- g)B
2

]

Pr(°:L5,n) ~ (1- g)f yA
3

+ (1- g)u [cyA
3

+ (1- g)B':3]n, n.

Pr(016,n) ~ (1- g)f
n

yA
4

+ (1- g)U
n

[cyA
4

+ (1- g)B
4

]

where

x ~ (l-a)(l- f+fg) ,

Y ~ (l-a)(l- g):r .

(19)
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And

Al=a+X(l-y)

2
A2 = xy , A4 = y

Bl = (1- c) f e,c + cX(l- y) + g(l- c)[c(l-y) + g(l- C)]},

B2 = (1- c) { cxy + g(l- c)[l -c(l- y) - g(l- C)]} ,

B3 = (1 - c) Icy( 1 - y) + (1 - g) (1 - c)[ c (1- y) + g( 1 - c) ] }

B4 = (1- c) {cl + (1- g)(l-c)[l - c(l- y) - g(l- C)]} .
In order to make predictions from Eq. 19, estimates of the param-

eters a, f, and c are needed. There are many ways of making these

estimates, but one simple method is to minimize the x2 associated

with the O. events. To illustrate the method let Pr(O. ;a,f,c)
l l,n

denote the probability of the event O. ,where al,n
f , and c have

been listed to make explicit the fact that the expression is a function

of the three parameters. Further, let N( O. )
l,n

denote the observed

frequency of stimulus items that display outcome

to n + 3 , and let

O.
l

over trials n

Then we define the function

[

16 [TPr (0. ;a,f,c) _ N(0.)]2
X2 ( ) ;;l:2'.::;n:.,....--~-_--e::lL'n~_a,f,c = ( )TPr O. ;a,f,c

i=l l,n
(20)

and select our estimates of a f ,and c so that they jointly

minimize the X2 function. A number of problems are involved in carrying
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out the minimization analytically, and consequently we have programmed

a high-speed computer to systematically scan grids of possible parameter

values until estimates are obtained that are accurate to three decimal

places. If we assume that all the stimulus items are stochastically

independent and identical, then under the null hypothesis it can be

shown that this minimum X2 has the usual limiting distribution with

12 degrees of freedom.

The minimum X
2 has seyeral desirable properties as an estimation

procedure; the resulting estimates are consistent (as the sample size

increases the estimates converge stochastically to the parameter value),

and asymptotically efficient (as the sample size increases the variance

of the estimates approach the minimal variance attainable for any

consistent estimate of the parameter, and the distribution of the

estimate approaches normality). The minimum X
2 also provides a

measure of the adequacy of any single model and, if the degrees of

freedom are equal, a method for directly comparing the fit of several

models. If several models are being analyzed, each involving a different

number of free parameters, then the probability levels of the X2 ,s

may be compared. The degrees of freedom associated with a model that

requires k parameters to be estimated from the data are

df ; 16 - k - 1 .

In the above equation one degree of freedom has been subtracted because

of the restriction that the 16 probabilities must sum to 1.

5. Data Analyses

5.1 Descriptions of experiments.
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In this section we analyze data from eight different paired-associate

learning experiments. All of the studies use the experimental procedure

described by Bower (1961). At the start of an experiment the subject

is told the responses available to him; each alternative occurs equally

often as the to-be-learned response and hence the probability of a

1correct response by guessing is roughly (where r is the number
r

of alternative responses). A response is obtained from the subject on

each presentation of an item and he is informed of the correct answer

following his response.

Relevant details of each experiment are given in Table 1. Experi-

ments Ia and Ib were run with college students. For both experiments

the stimuli were Greek letters and the responses were the low association

trigrams RIX, FUB, and GED; the experiments differed in that one used

a 9 item stimulus list and other an 18 item list. Experiment II was

also run with college students using 12 Greek letters as stimuli and the

numbers 4, 5, and 6 as responses. Experiment III was run with 3rd and

4th grade students using 12 Greek letters as stimuli and the numbers

2, 3, 4, and 5 as responses. Experiment IV was run with college students

using double digit numbers as stimuli and the letters A,B, C, and D

as responses. In Experiment V, a group of four and five year old children

learned a list of paired-associates each day for five consecutive days.

The lists were composed of double digit numbers as stimuli and letters

as responses but the stimuli and responses were different for each

list. To simplify the discussion, only results for days 1, 3, and 5

are·presented (labeled Experiments Va, Vc, and Ve respectively);



Table 1

Features of the Experimental Procedure

--..__._ .•._... - .._..._----_._ ....._-_._-.__.-._. __._.- ._-----~."--

Experiment INumber of Number of Number of Pr( c
5

)
Stimuli Responses Subjects

Ia 9 3 26 ·95

Ib 18 3 16 ·91

II 12 3 65 .83

III 12 4 40 ·75

IV 16 4 20 .84

Va 12 4 40 .60

Vc 12 4 40 ·71

Ve 12 4 40 .85
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however, these data are representative of the results for the full ex-

periment. A complete description of the experiment and results is

available elsewhere (Hansen, 1963).

5.2 AnalYsis of the four tuple data.

We now turn to an analysis of the response tuples described by

Eg. 18 for trials 2 to 5. For the experiments discussed in this paper,

these statistics are of particular importance because a major portion

of the learning occurred during the first five trials. This fact is

indicated in the last column of Table 1 where pr(c
5

) is presented;

in five of the eight experiments the subjects have reached a correct

response level of .83 or better by the start of trial 5.

Table 2 presents the observed frequencies of the ,0. 2 events for
l,

each study. Experiment Ia has 26 subjects each run on a list of 9

stimulus items, and hence there are 26 x 9 234 item-response seguences.

As indicated in the table, for 123 sequences no errors occurred on

trials 2, 3, 4, and 5; 3 sequences displayed no errors on trials 2, 3,

and 4 but an error on trial 5, and so on.

The X2 minimization procedure described by Eg. 20 was applied

to the data given in Table 2 for each of the paired-associate models.

Table 3 presents the parameter estimates associated with the minimum

x2 values. For the LS model the minimization was carried out for the

general case (Where the three parameters a, f, and c were estimated

simultaneously), and also for the special case where c = 1; hence-

forth, we shall refer to the first case as the LS-3 model and the second

case as the LS-2 model (the 3 and 2 designate the number of free param-

eters to be estimated). In five of the eight experiments the estimate





Table 2

Observed Frequencies for the 0. 2 Events
1.,

2013.

.

Experiment

Ia Ib II III IV Va Vc Ve

N(01,2) 123 125 303 160 117 82 144 216

N(02 2) 3 3 14 13 3 11 18 4,
N(03,2) 6 10 19 16 10 14 23 17

N(04 2) 1 4 12 11 1 13 9 6,
N(05,2) 16 21 54 24 15 22 28 34

N(06 2) 3 ° 17 6 3 21 14 16,
N(07,2) 5 6 32 18 9 20 12 12

N(08 2) 2 3 18 7 6 31 13 12, .

N(09,2) 43 55 125 57 54 58 62 66

N(010 2) 1 5 15 9 7 13 14 4,
N(Ol1 2) 7 10 25. 27 9 34 25 17,
N(012 2) 2 2 17 14 10 18 14 7,
N(013,2) 15 30 61 33 34 34 28 29

N( 014 2) ° 1 19 25 8 21 20 8,
N(015,2) 6 6 30 24 22 26 21 19

N(016 2) 1 7 19 36 12 62 35 13,
T 234 288 780 480 320 480 480 480



Table 3

Parameter Estimates for the Various Models

20,b

Experiment
Model Parameter

Ia Ib II III IV Va Vc Ve

One-element c .383 .328 .273 .203 .281 .125 .172 .289

Linear e .414 .328 .289 .258 .297 .164 .250 .336

c .563 .484 ·352 ·359 .398 .227 .406 .422
Two-phase

e .664 .633 .695 .563 .648 ·500 .477 .656

c ·531 .461 .344 .328 .367 .219 .359 . .438
RTI

e .820 .805 .867 ·797 .859 ·727 ·711 .789

a ·352 .305 .250 .188 .266 .109 .156 .258
LS-2

f ·719 .805 .805 ·789 .836 .844 ·727 .680

a .367 ·352 .250 .188 .289 .109 .156 .266

LS-3 f .648 ·375 .805 .789 .789 .844 ·727 .688

c .844 ·500 1.000 1.000 ·789 1.000 1.000 ·992

g' .883 .852 ·922 .891 ·922 ·797 .859 .844
Two-
element b .391 .398·.- .227 .078 .195 .133 .016 .227

a ·539 .477 .344 ·320 ·359 .219 ·352 .477
-
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of c for the LS-3 model was virtually equal to 1; hence, in these

instances the LS-3 model reduced to the two parameter version.

One property of parameter estimates that appears desirable is

monotonicity over the three sets of Experiment V data. This require-

ment seems reasonable since the subjects and procedures were the same,

and the overall proportion of errors decreased steadily over the five

experimental sessions. However, Table 3 reveals monotonicity only

for the parameter estimates associated with the LS-3 and LS-2 models

(and, of course, for the one-parameter models).

For each of the models, the ranks of the magnitude of the parameter

estimates were consistent over the eight experimertt~. For the two-

phase model and the RTI model the estimate of c was consistently

for the LS model, ~ < 1 < ~; and for the

note that in the
A A /I

two-element model b < a < g' • It is interesting to
/I /I

RTI model e;> 0.71, and in the two-element model g' :? 0·79 These

high estimates imply that for both models the first stepwise increment

in response probability is rather large.

As indicated earlier, Experiments Ia and Ib are comparable except

that the former study used a list of 9 items and the latter an18-i tem

list. In regard to the LS-3 model, it is interesting to note that

the conditioning parameter a is about the same for both list lengths.

However, the list-length variable is clearly reflected in the estimates

of f and c.

Table 4 presents the minimum X2 values; L e., the values

obtained by using the parameter estimates listed in Table 3. The x2



Table 4

Minimum x2 Values

218:

Experiment One- Linear Two- RTI LS-2 LS-3 Two-
element model phase element-

Ia 30·30 50·92 17·51* 9·74* 6·75* 5.67* 9·30*
I

Ib 39·31 95.86 18.25* 13·09* 19·69* 12.42* 12·74*

II 62.13 251. 30 54·78 29·11 3·73* 3·73* 28.46

III :1-50.66 296.30 95.44 51.12 33·02 33.02 47·13

IV 44.48 146.95 22.39* 10.66* 12.32* 10·77* 10·32*

Va 102.02 201.98 59·20 40.17 24.41* 24.41* 39·47

Vc 246·96 236.15 99·97 46.43 27·12* 27·12 34·75

Ve 161.03 262.56 126.05 84.07 20.12* 20.12* 77·39

Total x2 836.89 1542.02 493.59 284.39 147·16 137.26 259·56

df 14 14 13 13 13 12 12
-----_..

* Not significant at .01 level.
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values needed for significance at the .01 level are 26.22, 27,99, and

29.14 for 12, 13, and 14 degrees of freedom, respectively. To indicate

the magnitude of discrepancy that produces a particular value of X2 ,

Table 5 gives the observed and predicted response sequence probabilities

for Experiment II. (We chose to display data for this experiment since

it included the largest number of observations.)

Tables 4 and 5 demonstrate that certain models perform markedly

better than do others. Neither the one-element nor the simple linear

model yields accurate predictions. The sources of the disparity for

these two models are about the same in all sets of data, and are

indicated by Table 5. Especially prominent is the tendency for the

linear model to predict too few sequences of all correct responses.

According to Table 4, the RTI model is consistently more accurate

than the other two models which include linearity assumptions. 8ince

the' additional analyses to be reported corroborated this finding, we

conclude that the simple linear and two-phase linear models (as well

as the one-element model) are relatively inadequate. Hereafter, we

shall restrict our attention chiefly to the remaining models.

Of the three-parameter models, the two-element model is less

accurate than the L8-3 model in seven of the eight experiments. Both

the L8-3 and L8-2 models do reasonably well. As Table 4 indicates,

the number of data sets with significant X2 ,s is less for these models

than for any others. Also the values of X2 summed over data sets

are lowest for the long-short models (see Table 4). The addition of the

c parameter to the long-short formulation created only little



Table 5

Obse~ved and Predicted Response S~guence

Proportions for Experiment II

22a

Outcomes Observed One- Linear Two- RTI Long- Two-
Proportion element i&odel phase short element

01 .389 .362 .220 .328 .354 ·390 .357

O2 .018 .007 .045 .008 .017 .017 .018

0
3

.024 .015 .069 .022 .028 .029 .029

04 .015 .014 .014 .010 .011 .020 .011

0
5

.069 I .047 .112 .066 .063 .064 .062

0
6

.022 .014 .023 .012 .013 .020 .013

0
7

.041 .029 .035 .028 .026 .034 .026,

08 .023 .028 .007 .021 .020 .023 .020

0
9

.161 .178 .198 .210 .189 .164 .188

010 .019 .014 .041 .014 .018 .020 .018

011 .032 .029 .062 .035 .034 .034 .034

012 .022 .028 .013 .021 .020 .023 .020

0
13 .079 .093 .101 .102 .092 .074 .091

014 .024 .028 .021 .024 .024 .023 .024

0
15

.038 .059 .032 .055 .051 .039 .050

016 .024 .055 .007 .042 .040 .026 .039
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improvement in the fits. This finding reflects the fact, mentioned

earlier, that the estimate of c was usually close to 1.

To summarize Table 4, the long-short models are superior in

predicting response sequence frequencies ;of the remaining models,

the RTI variant is most accurate. In the sequel, we shall be primarily

concerned with testing these three models against other statistics.

One factor that explains why the long-short models do better than

the RTI model on the X
2 measure becomes obvious when an inspection

is made of the learning curves (Eq. 10) associated with the parameter

estimates given in Table 3. All three models accurately predict the

Pr(e) over trials except that the RTI model does rather poorly for
n

trial 2. Table 6 presents the observed and predicted proportions

correct on trial 2. For each of the eight sets of data, the discrepancy

is greater for the RTI model than for the long-short models. The mean

deviation between observed and predicted proportions is ,07 for the

RTI model against .01 for the long- short model.

5.3 Error~ conditionalized on previous errors.

We now consider Pr(e lie) , the probability of an error onn+ n

trial n + 1 conditional on an error on trial n. It will be seen

that this statistic, although not independent of those discussed in

Sec. 5.2, is quite useful in discriminating among various models.

For example, in the one-element model Pr(e lie) = (1- g)(l- c) ,n+ n

which is constant over trials; whereas, for the simple linear model

Pr( e 1 1e ) = (1- g) (1- e) n and decreases as n increases.n+ n

According to the RTI model, Pr(e lie) must decrease as nn+ n

increases. As indicated in Eq. 7, for the long-short formulation the



Table 6

Observed and Predicted Proportions

Correct on Trial 2

Experiment Observed RTI L8-3 L8-2

Ia .679 .624 .665 .689

Ib ·597 .581 .586 .627

II .601 ·532 .598 .598

III ·531 .446 ·519 ·519

IV ·513 .487 ·510 .540

Va .446 .369 .435 .435

Vc .544 .442 .538 .538

Ve .660 ·509 .618 .622

23a



24

trend of this conditional probability depends on the parameter values.

as a fUnction of nWhen we plot the observed values of Pr(e lie)n+ n

for each of our eight experiments the results are fairly decisive. For

six of the eight curves, Pr(e lie)n+ n clearly decreases as n increases.

The exceptions are Experiments Va and Vc; in both of these cases the

observed fUnctions appear to be reasonably constant over trials. Also,

Williams (1962) found that the probability of an error, conditionalized

on no prior correct responses to that paired-associate item, decreased

over trials. Using the parameter estimates given in Table 3, we find

curvesthat the RTI model and the LS-3 model fit our observed Pr(e lie)n+ n

about equally well. If we compute the sum over trials of the absolute

difference between predicted and observed values, then for Experiments

III, IV, and Ve.the RTI model yields a smaller sum than the LS-3 model,

whereas the opposite is true for the other five experiments. Hence,

our basis for preferring the long-short model is its superiority in

predicting the response sequence data as well as its explicit inclusion

of encoding and forgetting mechanisms.

A strong prediction of the long-short formulation when c ~ 1 is

that Pr( e 1 1 e )n+ n is constant over. trials;

Pr( e 1 1e ) ~ (1 - a)( 1 - g) fn+ n

Since this prediction was borne out in only two of the eight experiments,

we are inclined to reject the LS-2 model as an adequate theory of

paired-associate learning. However, in this regard it is interesting

to note that the Vincent curve method modified by Suppes & Ginsberg

(1963) to test the stationarity prediction of the one-element model gives
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rise to ambiguous results when applied to the LS-2 model. For the

LS-2 model we have stationarity after trial 1 and before the last

error, but it is confounded by the probability of a correct response

on trial 1. Specifically, if Pr(c Ie')n m
is the probability of a

correct response on trial n, given that the last error occurs on

trial m (m > n) , then for the LS-2 model

Pr( c Ie')n m

for n = 1

for n > 1

This result implies that a Vincent curve constructed by the methods

prescribed by Suppes & Ginsberg will not be constant under the assump-

tions of the LS-2 model. Instead, it will exhibit an increase from

the first part to later parts.

In the LS-3 model, the relation c < 1 changes the second

equality in the above equation to an inequality; i. e. ,

Pr(c Ie') < 1- f(l- g) ,n m

forAfter substitutingon trial ncan be in state U

for m> n. This inequality follows from the fact that the subject

1
g=]

Experiments la, Ib, and II and 1g = 4: for Experiments III, IV, and

V and using the estimates of f from Table 3 we see that the predicted

upper bounds on Pr( c Ie')n m are surprisingly low. The theoretical

proportions in question range from 0.37 to 0.75 with a median of 0,46.

To test whether the data satisfied the above inequality, we used the

observed proportion correct on the trial immediately preceding the

last pre-criterion error as an approximation to the observed maximum

of Pr(c Ie') . Except for Experiments III and Vc, the relevantn m

observed proportion was quite near or below the predicted upper bound.



26

In both of these data sets, the observed proportion exceeded that pre-

dieted by approximately 0.07. The import of this discrepancy is hard

to ascertain. Considering the low predicted values, it is gratifying

that the observed quantities did not further overshoot the predicted

upper bounds. However, the error appears too la~ge to be attributable

to sampling fluctuations. Perhaps a decline in f after trial 5

contributes to the error in predictions for Experiments III and Vc.

5.4 Trial- dependent forgetting process.

More generally,any Markov model with only one error state and

constant transition and guessing probabilities predicts the stationarity

of Pr(e lie) . For example, consider a model developed by Crothersn+ n

(1963) that distinguishes between three states of learning; a guessing

state (C), a weak state of conditioning in which forgetting can occur

(S) , and a strong state of conditioning (L) . The general formulation

of his model is in terms of the following matrix and response probability

vector:

L S C Pr(correct)

L

[:
0 0 1

S l-a-b b 1

C l-c-d d g

,This model predicts a non-stationary Vincent curve, but (like the LS-2

model) it also predicts that Pr(e lie)n+ n is constant over trials. In

fact, our LS-2 model is a special case of the Crothers model. For

when c ~ 1 it is no longer necessary to distinguish between states

U and F in the matrix of Eq. 3, and therefore the process can be
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described as follows:

L S C Pr( correct)

L 1 0 0
1 I

S a (l-a)(l- f) (1- a)f 1 I

gJc a (l-a)(l-f) (l-a)f

Despite an unrealistic prediction (i.e., that Pr( e 1 1e )n+ n

(21)

is

constant over trials), the LS-2 model describes many aspects of the

eight data sets remarkably well, as indicated by the results in Tables

4 and 5. Hence, for the moment it seems worthwhile to retain the basic

structure of the LS-2 model and determine what can be gained by pursuing

a generalization of the forgetting process that would permit Pr( e l ie)n+ n

to decrease over trials. We now examine one such generalization as

an alternative to .the LS-3 and BTl models.

Under the assumptions of the LS-2 model, if item i is reinforced

it passes into state L with probability a or into state S with

probabili ty 1 - a. Once in Lit is trapped there; but if in S

it may move back to C. That. is, other stimuli intervene from one

presentation of item i to its next presentation and during this

period there is probability f that forgetting will take place (i.e.,

item i will pass from state S to C). Thus the forgetting process

depends only on the number of intervening stimuli and is independent of

the stage of learning. One obvious generalization is to assume that the

likelihood of forgetting is not simply a function of the number of

intervening items, but depends on the number of intervening items that

have not already been learned. With this modification the transition

probabilities become fu~ctions of the trial number, and the matrix
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in Eg, 21 is rewritten as

L S C

L 1 0 0

S a (l-a)(l-F) (1- a)Fnn
(22)

C a (1- a)(l- F ) (1- a)Fnn

where F is a function of the number of unlearned items that inter
n

vene from the nth presentation of item i to its n +lst presentation.

Let us assume that each unlearned stimulus gives rise to complete for-

getting of item i with probability f' Thus, if there are k

unlearned stimuli presented between the nth and n + 1st presentation

of item i , then

By an unlearned stimulus item, we mean an item not already in state L.

Further, for a list length of X + 1 items the expected number of

unlearned items that intervene between the nth and n +lst presenta-

tion of a particular item is simply

Using this expected value as an approximation to the actual number of

unlearned items that intervene from the nth to the n+ 1st presenta-

tion of a given stimulus item we can write

F = 1 _ (1- f,)X(l- a)n .
n

Finally, to attain more generality, let us assume that forgetting also

can occur during the intertrial interval with probability f. Including

this factor in the forgetting process yields the following expression:

n
F = 1 _ (1 _ f)( 1- f') X( 1 - a) .

n



29

The model described by Eqs. 22 and 23 has three parameters: f, f' ,

and a. Also, the model takes explicit account of the list length

variable and the intertrial interval.

Henceforth, this model will be referred to as the trial-dependent-

forgetting process (TDF model). Of course, for the TDF model, Pr( e 1 1 e )n+ n

is a decreasing function of the trial number; i.e.,

Pr(e lie) = (1- g)(l- a)F .n+ n n

When f' = 0 , the model reduces to the LS-2 process.

Using Eqs. 22 and 23, we generated expressions (comparable to those

given by Eq. 19) for four-tuple response sequences. Minimum X2 ,s

were then computed for the data reported in Table 2; in carrying out

the minimizations account was taken of the list length variable X+ 1

as given in Table 1. Two sets of minimizations were run: one involved

estimating the three parameters a, f , and f' ., the other involved

estimating only a and f' (under the assumption that f = 0). The

resulting values and associated parameter estimates are given in

Table 7. The two-parameter case yields a total X2 value of 205.92,

which compares favorably with the total X2 'sfor the other two-param_

eter models (see Table 4). The three parameter case yields a total

X
2

of 137.55 which is virtually identical to the total x2 value for

the LS-3 model. Thus, in terms of these analyses it is difficult to

choose between the LS-3 model (Which postulates a constant forgetting

process and a coding operation), and the three parameter version of the

TDF model (Which does not postulate a coding operation but makes the

forgetting process time dependent). However, the fact that the TDF



Table 7

Parameter Estimates and Minimum

for the TDF Model

2X Values

Three parameter case Two parameter case

Experiment X2 a 'f' f X2 a f'

Ia 5.18* .328 .094 ·391 6.44* .289 .141

Ib 15·07* .281 .086 .266 15.36* .266 .102

II 3· 71* .242 .016 ·766 15·55* .219 .156

III 33.02 .188 0 ·789 44.40 .164 .141

IV 8·92* .250 .094 .398 9,·80* .242 .133

Va 24.41* .109 .016 .836 28·92 .102 .414

Vc 27·12 .156 0 ·727 39·24 .141 .320

Ve 20.12* .258 0 .680 46.21 .211 .281

2
137·55Total X 205·92

*Not significant at .01 level.
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model is non-Markovian greatly enhances the difficulty of performing

derivations (e.g. of distributions and expectations) for an infinite

sequence of trials. Also, other ways of introducing processes with

trial-dependent parameters can be suggested that are ~ priori about as

plausible as the approach outlines. These reasons lead us to doubt

that the TDF model is among the more promising conceptualizations.

5.5 Trial number of the last error and total errors.

Our final test of the LS-3 model consisted in predicting the ex-

pected total errors per subject-item, and the distribution and expecta-

tion of the trial number of the last error. The theoretical values

for Experiments la and lb were obtained by substituting the parameter

estimates given in Table 3 into Eqs. 11 and 14; the predicted expected

trial of last error was approximated by direct computation based on the,

first eleven terms of the theoretical probability distribution which

summed to approximately 0.99.

As one would expect, there is good agreement between the observed

and predicted mean trial number of last error. The one serious dis-

crepancy disclosed by Table 8 is that the first two terms of the

probability distribution of k (the trial number of last error) are

inadequately predicted in Experiment la. According to the model, the

distribution should be peaked at k = 1 , whereas the observed propor-

tions attain a maximum at k = 0 and decrease monotonically over k

There is also a slight tendency to underestimate the peaking at k = 1

in Experiment lb.

Further work is required to determine the source of the discrepancy

in the initial terms of this distribution. At present, it is uncertain



Table 8

Observed and Predicted (LS-3 Model) Values for

Experiments Ia and Ib

Exp. Ia Exp. Ib

Obs. Pred. Obs. Pred.

Expected total errors 1. 52 1.54 1.65 1.79

Expected trial of last error 1. 76 2.05 2.08 2.45

Probability of last error
on trial k

k ~ 0 .27 .17 .16 .14

k ~ 1 .24 .34 .26 .27

k ~ 2 .19 .19 .19 .19

k ~ 3 .13 .n .17 .13

k ~ 4 .10 .07 .n .09

k ~ 5 .04 .05 .07 .06

k ~ 6 .02 .03 .02 .04

k ~ 7 .01 .02 .00 .03

30a
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to what extent the deviation indicates an actual departure from the

assumed learning mechanism. An alternative explanation is that the

learning parameters increase (or the forgetting parameter decreases)

over trials. If this were the case, the estimates based on trials

2-5 would predict slower learning than that observed.

6. Discussion

The results of our analyses indicate that five of the seven models

tested yield relatively unsatisfactory predictions for paired-associate

learning under the experimental conditions described. One immediate

question is why the one-element model was consistently inaccurate.

At first glance, the reply might be that we estimated parameters and

tested predictions in a different fashion than did Bower (1961).

However, the model fails in Experiment Ia where well over 95% of the
,

errors are included in the four-tuple analysis; further, for our

experiments the Pr(e lie)M n
curves do not exhibit the stationarity

predicted by the one-element model. Therefore, it seems more likely

that differences in experimental method are responsible for the inadequate

performance of this model. The most important procedural difference

appears to be that the number of response alternatives was two in Bower's

study and three or four in the experiments reported here.

The LS-3 and the RTI models seem to warrant first consideration

for future experimental tests and theoretical development. The findings

in favor of the former model are not conclusive, but its parameters

have been identified more closely with psychological processes. Such

interpretations are helpful in suggesting how the parameter estimates
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should change under various experimental manipulations. Experiments

Ia and Ib provide evidence on this point for the list length variable.

As another example, it would be of interest to see if the probability

of forgetting (i.e., the parameter f) is invariant when the: type of

paired-associate stimulus is changed from one group of subjects to

another. Also, perhaps rehearsal of irrelevant material during the

intertrial· interval would affect only the forgetting parameter.

Another direction for further work involves improving the minimum

x2 technique of parameter estimation, especially when the data in

question display a high proportion of errors after trial 5. We can

write equations for seven-tuples (trials 2-8) without much difficulty.

The derivation depends upon finding the state probabilities of trial 5

conditional on a particular sequence on trials 2-4, and then using

Eq. 19. Beyond seven-tuples, however, the derivations become quite

cumbersome. FUrther, it is pertinent to know how parameter estimates

obtained from fits to other observed quantities (e.g., mean total errors

and mean trial of last error) agree with estimates found by the method

we have used.

Now let us ask to what extent the LS-3 model can be altered without

reducing the accuracy of its predictions. Other remarks on this issue

were made in Sec. 5.3 and 5.4. In developing the long-short model it

seemed natural to view forgetting as an event that influenced response

probability by changing the learning state. On the other hand, forgetting

can be interpreted as affecting the response probability directly,

without producing a state transition. That is, the LS-3 model can be

rewritten by collapsing states Sand F and making the response
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probability in the single intermediate state (let us call this state

SF) a fUnction of the forgetting parameter. For the transition matrix

and response probability vector we have

L

SF

U

L

1

a

ca

SF

o

u

b

o

l-c

Pr(correct)

1

l-f+fg

g

This representation of the LS-3 model is algebraically identical to

the original formulation given in Eg. 3. Hence both formalizations

yield identical predictions for response events and any preference for

one over the other would seem to derive from their respective heuristic

merits. For example, one way of treating response latency within the

framework of the LS-3 model is to postulate a latency distribution

associated with each of the learning states. For some data we have

seen, there is reason to believe that it would be necessary to postulate

four such distributions to give an accurate account of latency measures.

Hence, if one Were to take this approach to the analysis of latency

data, then the formalization given by Eg. 3 would be more natural than

that of Eg. 24.

The three-state representation of the LS-3 model suggests a closely

related model in which passage into state L occurs with probability

a on any trial, regardless of whether the current state is U or SF

In this version of the LS-3 model the transition matrix and response



Table 9

Parameter Estimates and Minimum x2 Values

for the Revised LS-3 Model

Parameter
X2Experiment

a f c

Ia .336 .677 ·761 6.15

Ib .227 .365 .475 13·50

II .250 .898 ·994 3·78

III .188 .781 ·950 32·92

IV .234 .541 .455 8.34

Va .109 .844 ·993 24.43

Vc .156 ·729 ·980 27·06

Ve .266 .688 ·995 20.36

Total X2 136.54

33a
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probability vector are as follows:

L SF U Pr(correct)

L 1 0 0 1

SF a l-a 0 l-f+fg (25)

u a c-a l-c g

where c ~ a. This model was applied to the four-tuple response data

in the manner described in Sec. 4.4. The parameter estimates and

associated x2 values are shown in Table 9. Note that this model

is as accurate as the original LS-3 model.

Our purpose in citing the formulation of the LS-3 model given in

Eg. 25 is to stress the difficulty of discriminating between models

that have similar structure. Conseguently, the psychological interpreta

tion imposed on a particular mathematical representation can be uniguely

supported only to a degree. The reader is referred to an article by

Sternberg (1963) for additional comments on the problem of decisively

discriminating among models.
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